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Abstract. Hierarchical models in Bayesian inverse problems are characterized by an assumed prior probability
distribution for the unknown state and measurement error precision, and hyper-priors for the prior
parameters. Combining these probability models using Bayes’ law often yields a posterior distribu-
tion that cannot be sampled from directly, even for a linear model with Gaussian measurement error
and Gaussian prior, both of which we assume in this paper. In such cases, Gibbs sampling can be
used to sample from the posterior [Bardsley, SIAM J. Sci. Comput., 34 (2012), pp. A1316–A1332],
but problems arise when the dimension of the state is large. This is because the Gaussian sample
required for each iteration can be prohibitively expensive to compute, and because the statistical
efficiency of the Markov chain degrades as the dimension of the state increases. The latter problem
can be mitigated using marginalization-based techniques, such as those found in [Fox and Norton,
SIAM/ASA J. Uncertain. Quantif., 4 (2016), pp. 1191–1218; Joyce, Bardsley, and Luttman, SIAM J.
Sci. Comput., 40 (2018), pp. B766–B787; Rue and Held, Monogr. Statist. Appl. Probab. 104, Chap-
man & Hall/CRC, Boca Raton, FL, 2005], but these can be computationally prohibitive as well.
In this paper, we combine the low-rank techniques of [Brown, Saibaba, and Vallélian, SIAM/ASA
J. Uncertain. Quantif., 6 (2018), pp. 1076–1100] with the marginalization approach of [Rue and
L. Held, Monogr. Statist. Appl. Probab. 104, Chapman & Hall/CRC, Boca Raton, FL, 2005]. We
consider two variants of this approach: delayed acceptance and pseudomarginalization. We provide
a detailed analysis of the acceptance rates and computational costs associated with our proposed al-
gorithms and compare their performances on two numerical test cases—image deblurring and inverse
heat equation.
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1. Introduction. Inverse problems arise in a wide range of applications and typically
involve estimating unknown parameters in a physical model from noisy, indirect measurements.
In the applications that we are interested in, the unknown parameter vector results from the
discretization of a continuous function defined on the computational domain and hence is
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1106 SAIBABA, BARDSLEY, BROWN, AND ALEXANDERIAN

high-dimensional. Additionally, the inverse problem of recovering the unknown parameters
from the data is ill-posed : a solution may not exist, may not be unique, or may be sensitive
to the noise in the data.

To set the context of our work and some notation, we consider a discrete measurement
error model of the form

(1) b = Ax+ ε, ε ∼ N (0, µ−1IM ),

where b ∈ RM denotes the measurements, A ∈ RM×N is the discretized forward model,
x ∈ RN is the unknown estimand, and µ > 0 is the error precision. The inverse problem here
seeks to recover the unknown x from the measurement b.

The statistical model (1) implies that the probability density function for b is given by

(2) π(b | x, µ) ∝ µM/2 exp
(
−µ

2
‖Ax− b‖22

)
,

where “∝” denotes proportionality. To address the ill-posedness, we also assume a Gaussian
prior probability density function (akin to choosing a quadratic regularization function) of the
form

(3) π(x | σ) ∝ σN/2 exp
(
−σ

2
x>Γ−1

priorx
)
.

For convenience, we take the prior to have zero mean, but a nonzero mean can also be easily
incorporated into our framework. Then, if we define θ = (µ, σ), through Bayes’ law we obtain
the posterior density function of x conditioned on b and θ:

(4)
π(x | b,θ) ∝ π(b | x, µ)π(x | σ)

∝ µM/2σN/2 exp
(
−µ

2
‖Ax− b‖22 −

σ

2
x>Γ−1

priorx
)
.

The maximizer of π(x | b,θ) is known as the maximum a posteriori (MAP) estimator, which is
also the minimizer of − lnπ(x | b,θ). This, in turn, has the form of a Tikhonov regularization,
thus establishing a connection between Bayesian and classical inverse problems.

The scaling terms in (4) involving µ and σ arise from the normalizing constant of the
Gaussian measurement error and prior models. In the hierarchical Bayesian approach we
will also treat θ = (µ, σ) as unknown. The a priori uncertainty about plausible values of θ
is quantified in the prior distribution with density π(θ). For convenience, we assume that
the precision parameters µ and σ are independent and Gamma-distributed. Specifically, we
assume

(5) π(θ) = π(µ)π(σ) ∝ µαµ−1σασ−1 exp(−βµµ− βσσ).

Other choices are also possible and are discussed in [24, 46, 8] and elsewhere. Applying Bayes’D
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law again yields a posterior density function of x and θ conditioned on b:

(6) π(x,θ | b) ∝ π(x | b,θ)π(θ).

The marginal distribution π(θ | b) can be derived by integrating over x, i.e., π(θ | b) =∫
Rn π(x,θ | b)dx. Explicit expressions for these distributions are provided in section 2.

The focus of this paper is on the problem of sampling from the posterior distribution
π(x,θ | b). In general, the full-posterior is not Gaussian and to explore this distribution the
prevalent approach is to use Markov chain Monte Carlo (MCMC) methods [40, 30, 26, 50, 23].
For a more comprehensive review of MCMC methods, please refer to [6]. Several MCMC
algorithms have been treated in the context of inverse problems in recent literature, which
we briefly review. Specifically, in [3], conjugacy relationships are exploited to define a Gibbs
sampler, in which samples from the conditional densities π(θ | b,x) and π(x | b,θ) (which are
Gamma- and Gaussian-distributed, respectively) are cyclically computed. The computational
cost of this Gibbs sampler is prohibitive for N sufficiently large. This is due to the fact that
as N →∞, the integrated autocorrelation time of the MCMC chain also tends to ∞, meaning
that the number of Gibbs samples must increase with N ; see [1] for details. And second,
computing samples from π(x | b,θ) requires the solution of an N × N linear system, and
hence the computational cost of the individual Gibbs samples also increases with N .

To address the first computational issue, i.e., that the correlation in the MCMC chain
increases with N , an alternative to the Gibbs sampler is presented in [45], where a proposed
state (x∗,θ∗) is computed in two stages by first drawing θ∗ from a proposal distribution and
then drawing x∗ ∼ π(x | θ∗, b). The proposal (x∗,θ∗) is accepted or rejected jointly using a
Metropolis–Hastings step to obtain an approximate draw from the posterior π(x,θ | b). This
approach, called the one-block algorithm [45], does not have the same degeneracy issues as
the Gibbs sampler as N → ∞. However, it can be expensive to implement when evaluating
π(θ | b) is computationally demanding and one still has to compute a sample from π(x | θ∗, b)
at every iteration.

To address the second computational issue, i.e., that the cost of computing samples from
π(x | b,θ) increases with N , we implement the approach taken in [8], where a low-rank ap-
proximation of the so-called prior preconditioned data misfit part of the Hessian is used. This
low-rank representation allows efficient sampling from the conditional distribution, reducing
the overall computational cost. When the forward operator is defined using partial differ-
ential equations, computing the conditional covariance matrix once may require hundreds of
thousands of PDE solves; in the context of an MCMC algorithm which requires repeated
computation of the conditional covariance, this can be prohibitively expensive. Even when
the conditional covariance can be formed, storing it requires O(N2) in memory and O(N3)
in computational cost, which is infeasible when N is large (e.g., O(105)). When the forward
operator A and the prior covariance matrix are diagonalized by the Fourier transform, algo-
rithms such as the fast Fourier transform can be used effectively [5]. Other methods based on
Krylov subspace solvers, e.g., conjugate gradient, have also been developed [27]. All of these
approaches still suffer from the degeneracy issue as N →∞.

The contributions of this paper are as follows. First, to tackle the two drawbacks of the
Gibbs sampler, as described above, we combine the approaches of the previous two paragraphs,
which to our knowledge has not been done elsewhere. The use of a low-rank approximationD
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1108 SAIBABA, BARDSLEY, BROWN, AND ALEXANDERIAN

defines an approximate posterior density function π̂(x,θ | b), whose samples are only ap-
proximate and thus must be embedded within a Metropolis–Hastings or importance sampling
framework. In our first algorithm, which we call approximate one-block (AOB), π̂(x,θ | b) is
used as a proposal for Metropolis–Hastings, with the proposal samples computed using the
one-block algorithm. We propose two other variants of the one-block algorithm that make
use of π̂(x,θ | b). Specifically, we embed one-block applied to π̂(x,θ | b) within both the
delayed acceptance [13] and pseudomarginal [2] frameworks to obtain samples from the full
posterior π(x,θ | b). Thus the algorithms we propose result from combining the low-rank
approximation approach of [8] with one of the existing MCMC methods mentioned above. To
increase the novelty of our work, and also to provide the user with some intuition on how
well our algorithms can be expected to perform in practice, we present theoretical results that
provide insight into the acceptance rates and the performance of the algorithms. The main
takeaway is that when the low-rank approximation is sufficiently close (in a sense that we
make precise in section 4), the algorithms have similar behavior to the one-block algorithm.

Hierarchical Bayesian approaches have been applied to inverse problems in various other
works, going back to [35] and more recently in [11, 12]. However, in those works the posterior
density function π(x,θ | b) is maximized, yielding the MAP estimator, whereas in this paper
we want to perform uncertainty quantification (UQ), and so need to compute samples from
the posterior. Sample-based methods for inverse problems first appear in the works [41, 34].
In recent years, MCMC methods for Bayesian inverse problems has become an active field,
with some recent advances including gradient and Hessian-based MCMC methods [39, 43],
likelihood-informed MCMC methods [17], and transport map accelerated MCMC methods
[42]. In the Bayesian statistics literature, MCMC methods for hierarchial models of the type
considered here are standard; see, e.g., [25]. Moreover, the Gibbs sampler of [3] for inverse
problems is used in the context of spatio-temporal models in [31]. Some properties of this
Gibbs sampler are derived in [1], and various extensions are presented in [8, 22, 33], which have
improved convergence properties and/or improved computational efficiency. The algorithms
presented in this paper fit within this last group of MCMC methods.

The paper is organized as follows. In section 2, we present the hierarchical Gibbs sampler
and discuss the infinite-dimensional limit, presenting the result of [1] showing the degeneracy
of hierarchical Gibbs as N →∞. We then present the one-block algorithm of [45], which does
not have the same degeneracy issues. In section 3, we present the new algorithms making
only limited assumptions regarding the approximate full posterior distribution. In section 4,
we provide a theoretical analysis of our proposed algorithms, making explicit use of low-
rank structure. The numerical experiments in section 5 include a model one-dimensional
deblurring problem which allows us to compare and contrast the various algorithms and a
PDE-based example of inverse heat equation that demonstrates the computational benefits of
our approaches. We summarize our work and discuss future research in section 6.

2. Review of MCMC algorithms. In this section, we present two MCMC algorithms for
background. The first method is known as hierarchical Gibbs and is standard. Its convergence
characteristics serve as motivation for the second algorithm, which is known as one-block.

2.1. The hierarchical Gibbs sampler. Under our assumed model, we provide explicit
expressions for the posterior and the marginal distribution. To obtain the expression for theD
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posterior distribution, combine (4) with (5) via (6) to obtain

π(x,θ | b) ∝ π(x | b,θ)π(θ)

∝ µM/2σN/2π(θ) exp
(
−µ

2
‖Ax− b‖2 − σ

2
x>Γ−1

priorx
)

∝ µM/2σN/2π(θ) exp

(
−µ

2
b>b+ µb>Ax− 1

2
x>Γcond(θ)x

)
= µM/2σN/2π(θ) exp

(
−µ

2
b>b+

µ2

2
b>AΓcond(θ)A>b

)
× exp

(
−1

2
(x− xcond(θ))TΓ−1

cond(θ)(x− xcond(θ))

)
,

where xcond(θ) = µΓcond(θ)A>b and Γ−1
cond(θ) = µA>A+σΓ−1

prior. It follows that the marginal

distribution, π(θ | b) =
∫
Rn π(x,θ | b)dx, is given by

(7) π(θ | b) ∝ µM/2σN/2π(θ)√
det(Γ−1

cond(θ))
exp

(
−µ

2
b>b+

µ2

2
b>AΓcond(θ)A>b

)
.

Observe that the joint posterior density satisfies π(x,θ | b) = π(θ | b)π(x | θ, b), where
x | θ, b ∼ N (xcond(θ),Γcond(θ)).

We begin with the hierarchical Gibbs sampler of [3]. Our choice of prior (3) for x, and the
hyper-prior (5) for θ = (µ, σ), respectively, were made with conjugacy relationships in mind
[25], i.e., so that the “full conditional” densities have the same form as the corresponding
priors:

π(µ | x, σ, b) ∝ µM/2+αµ−1 exp

([
−1

2
‖Ax− b‖22 − βµ

]
µ

)
,(8)

π(σ | x, µ, b) ∝ σN/2+ασ−1 exp

([
−1

2
xTΓ−1

priorx− βσ
]
σ

)
,(9)

π(x | µ, σ, b) ∝ exp
(
−µ

2
‖Ax− b‖2 − σ

2
xTΓ−1

priorx
)
.(10)

Note that (8) and (9) are Gamma densities, while (10) is the density of a Gaussian distribution.
Algorithm 1 follows immediately from (8)–(10) and is precisely the hierarchical Gibbs sampling
algorithm of [3].

The values of M and N are determined by the number of measurements and the size of
the numerical mesh, respectively, making the problems discrete. Since M is the dimension of
our measurement vector, we assume that it is a fixed value. However, we are free to choose
N as we please, and the behavior of our approaches as N →∞ is an important question. In
what follows, we briefly discuss the infinite-dimensional limit, pointing the interested reader
to the extensive treatments found in [49, 20] for more details.

Consider the linear inverse problem, which typically arises from the discretization of a
Fredholm integral equation of the first kind, for example,

(11) b(s) =

∫
Ω
a(s; t)x(t)dt, s ∈ Ω,

D
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1110 SAIBABA, BARDSLEY, BROWN, AND ALEXANDERIAN

Algorithm 1 Hierarchical Gibbs Sampler.

Input: Set x(0) = xcond(θ(0)), and define K and burn-in period Kb.

Output: Approximate samples from the posterior distribution {x(t),θ(t)}Kt=Kb+1.

1 for t = 1 to K do
2 Compute µ(t) ∼ Γ

(
M/2 + αµ,

1
2‖Ax(t−1) − b‖2 + βµ

)
.

3 Compute σ(t) ∼ Γ
(
N/2 + ασ,

1
2(x(t−1))

TΓpriorx(t−1) + βσ
)
.

4 Compute x(t) ∼ N
(
xcond(θ(t)),Γcond(θ(t))

)
, where θ(t) = (µ(t), σ(t)).

5 end

where b is the model output function, Ω is the computational domain, a is the integral kernel
or point spread function, and x is the unknown which we seek to estimate. We define AMx
to be the forward operator discretized only in its range, so that AM : X → RM , where
X = C(Ω̄), and Ω is the spatial domain. For example, in one-dimensional deconvolution,
(with Ω = (0, 1)) one can have

[AMx]i =

∫ 1

0
a(si − s′)x(s′)ds′, i = 1, . . . ,M.

Discretizing this integral in the s′ variable, e.g., using a uniform mesh on [0, 1] with N
grid elements and midpoint quadrature, then yields Ax. Then we have that

(12) lim
N→∞

‖Ax− b‖22 = ‖AMx− b‖22.

Note that here x denotes the discretized version of x ∈ X. For the prior (3), it is typical to
choose Γprior to be the numerical discretization of the inverse of a differential operator. That is,
letting Γprior denote the infinite-dimensional prior covariance operator, we define Γprior = L−1,
where L is a differential operator. A basic requirement on Γprior is that it has to be trace-class
on L2(Ω). That is, for any orthonormal basis {φi}∞i=1 of L2(Ω),

∑∞
i=1〈φi,L−1φi〉 < ∞; see

[49]. Moreover, if 〈x, y〉 is the standard L2(Ω) inner product, we can use midpoint quadrature
to obtain 〈x, y〉 = limN→∞〈x,y〉N , where the boldface letters indicate discretized versions of
the variables and 〈x,y〉N := 1

N

∑N
i=1 xiyi. Using this notation,

(13) lim
N→∞

〈x,Γ−1
priorx〉N = 〈x,Lx〉.

Combining (12) and (13) yields

(14) lim
N→∞

{µ
2
‖Ax− b‖22 +

σ

2
〈x,Γ−1

priorx〉N
}

=
µ

2
‖AMx− b‖22 +

σ

2
〈x,Lx〉.

There are two issues that arise when we consider the limit as N → ∞: the first is
mathematical, and the second is computational. A question that immediately arises is whether
or not one can define an infinite-dimensional limit of the posterior density function. We
cannot define a probability density function on a function space. The reason for this is
that in finite dimensions, the posterior density is none but the Radon–Nikodym derivative ofD
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posterior probability law of the inference parameter with respect to Lebesgue measure, but
one cannot define a Lebesgue measure on an infinite-dimensional function space. However,
as shown in [49], given that the prior covariance operator is trace class and AM : X → RM
is a continuous linear transformation, the posterior law of x, which we denote by νb,θ, is a
Gaussian measure on L2(Ω), νb,θ = N (xcond(θ),Γcond(θ)), with

Γ−1
cond = µA∗MAM + σΓ−1

prior, xcond = µΓcondA∗Mb.

As for the construction of the prior covariance operator, as mentioned before, a common
approach is to define them as inverses of differential operators. For example, we can define

Γprior = L−s, Lu = −κ∆u+ αu, κ > 0, α ≥ 0,

with suitable boundary conditions, which is related to the Whittle–Matérn prior [4]. In this
paper, we choose α = 0, κ = σ−1/s, and homogeneous Dirichlet boundary conditions for the
Laplacian. Therefore, Γprior = σ(−∆)−s, leaving only σ as the hyper-parameter for the prior.
Moreover, to ensure that the covariance operator so defined is trace-class, we require s > d/2,
where d is the spatial dimension of the problem. For the one-dimensional example in (11),
s = 1 would suffice. For problems with d = 2 or d = 3, a convenient option is s = 2. Note
this assumption on s also ensures that the prior draws are almost surely continuous. For
further details on the definition of Gaussian measures on infinite-dimensional Hilbert spaces,
see [18, 19].

A second question that arises is whether or not the performance of the hierarchical Gibbs
sampler is dependent upon N . For inverse problems in which the infinite-dimensional limit
is well-defined, MCMC methods whose performance is independent of the discretization (N
in this case) are desirable. In line 3 of Algorithm 1, we see that N appears in the Gamma
conditional density π(σ | x, µ, b), and thus it should not be surprising to find the σ-chain is
dependent on N . The exact nature of this dependence is the subject of [1, Theorem 3.4],
where under reasonable assumptions it is shown that the expected step in the σ-chain scales
like 2/N . Specifically, for any σ > 0,

N

2
E
[
σ(t+1) − σ(t)|σ(t) = σ

]
= (ασ + 1)σ − fN (σ; b)σ2 +O(N−1/2),

where E denotes expectation and fN (σ; b) is bounded uniformly in N . Moreover, the variance
of the step also scales like 2/N ; for any σ > 0,

N

2
Var

[
σ(t+1) − σ(t)|σ(t) = σ

]
= 2σ2 +O(N−1/2).

A consequence of these results, as is noted in [1], is that the expected squared jumping distance
of the Markov chain for σ is O(1/N). Moreover, it is noted that the lag-1 autocorrelation of
the σ-chain behaves like 1− c/N for some constant, but Var(σ(t)) = O(1). Hence, the Monte

Carlo error associated with K −Kb draws in stationarity is O(
√
N/(K −Kb)). Thus, the σ-

chain becomes increasing correlated as N →∞. This phenomenon is illustrated in Figure 1,
which displays the empirical autocorrelation functions for the µ- and σ-chains generated by
Algorithm 1 for a one-dimensional image deblurring test problem. Note that as N increases
by a power of 2, so does the integrated autocorrelation time (IACT).D
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Figure 1. Plots of the empirical autocorrelation functions for the σ chains in the one-dimensional deblurring
example: (left) block-Gibbs and (right) AOB discussed in subsection 3.1. See subsection 5.1 for details regarding
the experimental setup.

2.2. One-block MCMC. An alternative algorithm for computing a sample (x′,θ′) ∼
π(x′,θ′ | b) is to first compute a sample from the marginal density θ′ ∼ π(θ′ | b), defined
in (7), and then compute a sample from the conditional density x′ ∼ π(x′ | b,θ′). In principle,
we can use this procedure as an alternative to Algorithm 1. In practice, it is often not possible
to sample directly from π(θ | b). In the one-block algorithm of [45], a Markov chain is generated
in which if (x,θ) is the current element of the chain, a state θ′ is proposed from some proposal
distribution with density r(θ′ | θ), then x′ ∼ π(x′ | b,θ′) is drawn, and the pair (x′,θ′) is
accepted with probability

ρ1(θ′;θ) = min

{
1,
π(x′,θ′ | b)
π(x,θ | b)

r(θ | θ′)π(x | b,θ)

r(θ′ | θ)π(x′ | b,θ′)

}
= min

{
1,
π(θ′ | b)r(θ | θ′)
π(θ | b)r(θ′ | θ)

}
.(15)

The resulting MCMC method is given by Algorithm 2.

Algorithm 2 One-Block MCMC.

Input: Set x(0) = xcond(θ(0)), and define K and burn-in period Kb.

Output: Approximate samples from the posterior distribution {x(t),θ(t)}Kt=Kb+1.

1 for t = 1 to K do
2 Compute θ∗ ∼ r(θ∗ | θ(t−1)).

3 Compute x(t) ∼ π(x(t) | b,θ∗).
4 Set (x(t),θ(t)) = (x∗,θ∗) with probability ρ1(θ∗;θ(t−1)), defined in (15), else set

(x(t),θ(t)) = (x(t−1),θ(t−1)).

5 end
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Note that by combining the random walk θ′ ∼ r(θ′ | θ) with the conditional sample
x′ ∼ π(x′ | b,θ′), x is marginalized (i.e., integrated out) from the posterior, as is seen
by the acceptance ratio (15) which is independent of x. Note that if r(· | ·) is used as a
Metropolis–Hastings proposal for sampling from the marginal density π(θ | b) (which defines
the MCMC method proposed in [22]), the acceptance ratio is also given by (15). Thus, the
θ-chain generated by Algorithm 2 converges in distribution to π(θ | b) and its behavior is
independent of x, as desired.

As an alternative to MCMC, we remark that there exist special cases of the hierarchical
Bayesian model in which the hyperparmeters θ can be analytically integrated out to obtain a
closed-form marginal posterior density x | b (e.g., multivariate t). Despite the fact that MCMC
is no longer necessary in such scenarios, there is still the need to work with a scale matrix
that may require many forward solutions to compute, rendering such an approach impractical.
Flath et al. [21] study this issue in the Gaussian case in which the precision parameters are
held fixed (as opposed to integrating them out). The same problems arise with any other
distribution of x | b, but with additional difficulties since other forms are generally no longer
in the Gaussian class of distributions. Further, a researcher may wish to use alternative hyper-
priors other than those that lead to closed-form distributions for the sake of obtaining a better
reconstruction. The approach we consider here is flexible with respect to such considerations
because the conditional distribution of x | θ, b is still Gaussian, regardless of the prior on θ.
Exploration of alternative priors for θ is beyond the scope of the present work.

3. Algorithms. For some applications, evaluating the marginal density π(θ | b) is not
computationally tractable, nor is computing exact samples x′ ∼ π(x′ | b,θ′). In this case,
implementation of Algorithm 2 is infeasible. However, suppose that we have an approximate
posterior density function π̂(x,θ | b) for which the marginal density π̂(θ | b) can be evaluated,
and exact samples x′ ∼ π̂(x′ | b,θ′) can be drawn efficiently.

In this section, we propose three MCMC algorithms, each of which uses π̂(x,θ | b) to ap-
proximate Algorithm 2. We note that Rue and Held [45] also consider approximate marginal-
ization of x in the one-block algorithm. However, the difference between our approach and
that of [45] is the nature of the approximate posterior distribution. Specifically, motivated by
non-Gaussian conditional distributions that arise in, e.g., Poisson counts for disease mapping,
Rue and Held [45] use an approximation based on a Taylor expansion of the log-likelihood
about the mode of the full conditional distribution, resulting in a Gaussian proposal in the
Metropolis–Hastings algorithm. By contrast, we are concerned with cases in which the full
conditional is still Gaussian distributed, but drawing realizations from the distribution and
evaluating the density are computationally prohibitive because of the dimensionality of the
unknown parameters. We discuss in subsection 4.4 our construction of the approximation
π̂(x,θ | b) and its effect on the proposed algorithms.

3.1. Approximate one-block MCMC. Suppose we generate a proposal (x′,θ′) by first
drawing θ′ from a proposal distribution with density r(θ′ | θ) followed by drawing x′ ∼ π̂(x′ |
θ′, b). Using this in a Metropolis–Hastings sampler with target distribution π(x,θ | b) is
simply the one-block algorithm with π̂(x | θ, b) in place of π(x | θ, b). The proposal density
is then given by

q(x′,θ′ | x,θ) = π̂(x′ | θ′, b)r(θ′ | θ),D
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1114 SAIBABA, BARDSLEY, BROWN, AND ALEXANDERIAN

Algorithm 3 Approximate One-Block MCMC.

Input: Initialize θ(0). Define the length of the chain C and burn-in period Cb.

Output: Approximate sample from the posterior distribution {x(t),θ(t)}Kt=Cb+1.

1 Compute x(0) ∼ π̂(x | b,θ(0)).

2 for t = 1 to K do
3 Draw θ′ from distribution with density r(θ′ | θ(t−1)).

4 Draw x′ from distribution with density π̂(x′ | θ′, b).
5 Set (x(t),θ(t)) = (x′,θ′) with probability ρ2(x′,θ′;x(t−1),θ(t−1)) defined in (16); else

set (x(t),θ(t)) = (x(t−1),θ(t−1)).

6 end

and hence, the acceptance probability is

(16) ρ2(x′,θ′;x,θ) = min

{
1,
π(x′,θ′ | b)π̂(x | θ, b)r(θ | θ′)
π(x,θ | b)π̂(x′ | θ′, b)r(θ′ | θ)

}
.

The full procedure is summarized in Algorithm 3.
There are two observations to make about Algorithm 3, each of which motivates the

MCMC methods that follow. First, computing the ratio (16) requires evaluating the true
posterior density π(x,θ | b). In cases in which this is computationally burdensome, the MCMC
method presented next seeks to avoid extraneous evaluations of π(x,θ | b) using a technique
known as delayed acceptance [13]. Second, Algorithm 3 only approximately integrates x out
of π(x,θ | b), since π(θ | b) ≈ π(x,θ | b)/π̂(x | θ, b), but this is not an exact marginalization
and thus some dependence between the x and θ chains may remain, slowing convergence of
the algorithm. However, as we discuss below, Algorithm 3 is a special case of the so-called
pseudomarginal MCMC algorithm [2]. By generalizing the AOB algorithm, we can improve
the approximation to π(θ | b) and thus improve the mixing of the Markov chains.

3.2. Approximate one-block MCMC with delayed acceptance. It will often be the case
that evaluating π(x,θ | b) is computationally prohibitive and/or significantly more expensive
than evaluating π̂(x,θ | b), in which case one would like to generate samples from π(x,θ | b)
while minimizing the number of times its density is evaluated. This motivates the use of the
delayed acceptance framework of [13] to improve the computational efficiency of Algorithm 3.
In this approach, one step of Algorithm 2 is used with π̂(x,θ | b) taken as the target distribu-
tion. Only if (x′,θ′) is accepted as a sample from π̂(x,θ | b) is it proposed as a sample from
π(x,θ | b). The idea is to only evaluate π(x′,θ′ | b) for proposed states that have a high prob-
ability of being accepted as draws from the true distribution. This prevents us from wasting
computational effort on rejected proposals. The approximate distribution in the first stage is
essentially a computationally cheap “filter” that prevents this from occurring. The resulting
approximate one-block MCMC with delayed acceptance (ABDA) procedure is given in Algo-
rithm 4. Note that the delayed acceptance algorithm proposed here is related to the surrogate
transition method [38, section 9.4.3] and is a special case of [13] with a state-independent
approximation.D
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Algorithm 4 Approximate One-Block MCMC with Delayed Acceptance.

Input: Initialize θ(0). Define the length of the chain C and burn-in period Cb.

Output: Approximate sample from the posterior distribution {x(t),θ(t)}Ct=Cb+1.

1 Compute x(0) ∼ π̂(x | b,θ(0)).

2 for t = 1 to K do
// Stage 1: apply the one-block algorithm to π̂(x,θ | b).

3 Draw θ∗ from the distribution with density r(θ∗ | θ(t−1)).

4 Draw x∗ from the distribution with density π̂(x∗ | θ∗, b).
5 Compute ρ̂1(θ∗; θ(t−1)) defined in (18).

6 Set (x′,θ′) ← (x∗,θ∗) and promote to Stage 2 with probability ρ̂1(θ′;θ(t−1)) else set
(x′,θ′)← (x(t−1),θ(t−1)) and promote.

// Stage 2: accept/reject (x′,θ′) as a proposal for π(x,θ | b).
7 Define

(17) ρ3(x′,θ′;x,θ) = min

{
1,
π(x′,θ′ | b)q(x,θ | x′,θ′)
π(x,θ | b)q(x′,θ′ | x,θ)

}
,

where q(x′,θ′ | x(t−1),θ(t−1)) is defined in (19). Set (x(t),θ(t)) = (x′,θ′) with proba-
bility ρ3(x′,θ′;x(t−1),θ(t−1)), else set (x(t),θ(t)) = (x(t−1),θ(t−1)).

8 end

Let ρ̂1(θ′; θ(t−1)) be given by (15), but with π(x,θ | b) replaced by π̂(x,θ | b), i.e.,

ρ̂1(θ′; θ(t−1)) = min

{
1,

π̂(x′,θ′ | b)
π̂(x(t−1),θ(t−1) | b)

r(θ(t−1) | θ′)π̂(x(t−1) | b,θ(t−1))

r(θ′ | θ(t−1))π̂(x′ | b,θ′)

}

= min

{
1,

π̂(θ′ | b)r(θ(t−1) | θ′)
π̂(θ(t−1) | b)r(θ′ | θ(t−1))

}
.(18)

Then, Stage 2 of Algorithm 4 is a Metropolis–Hastings algorithm with target distribution
π(x,θ | b) and proposal density given by

(19)
q(x′,θ′ | x(t−1),θ(t−1)) = ρ̂1(θ′; θ(t−1))π̂(x′ | θ′, b)r(θ′ | θ(t−1))

+ δ(x(t−1),θ(t−1))(x
′,θ′)(1− y(θ(t−1))),

where y(θ(t−1)) =
∫ ∫

ρ̂1(θ′; θ(t−1))π̂(x′ | θ′, b)r(θ′ | θ(t−1))dx
′dθ′. Note that there is never

a need to evaluate y(θ(t−1)), since when the promoted state is (x(t−1),θ(t−1)),

ρ3(x′,θ′;x(t−1),θ(t−1)) = 1,

and the chain remains at the same point. Conversely, when the composite sample (x′,θ′) is
promoted, (x′,θ′) 6= (x(t−1),θ(t−1)) and

q(x′,θ′ | x(t−1),θ(t−1)) = ρ̂1(θ′; θ(t−1))π̂(x′ | θ′, b)r(θ′ | θ(t−1)).D
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1116 SAIBABA, BARDSLEY, BROWN, AND ALEXANDERIAN

We discuss in section 4 the conditions under which the acceptance rate in the second stage is
high, thus preventing wasted computational effort on rejected proposals.

The validity of the ABDA algorithm can be gleaned by recognizing that it is a special
case of the delayed acceptance algorithm in [13], with first stage proposal given by π̂(x |
θ′, b)r(θ′ | θ), the approximating density given by π̂(x,θ | b), and target density π(x,θ | y).
This latter observation allows us to apply Theorem 1 of [13] to establish the irreducibility and
aperiodicity of the ABDA Markov chain. Standard ergodic theory (e.g., [44]) then provides
that π(x,θ | b) is, in fact, the limiting distribution.

3.3. Pseudomarginal MCMC. As noted at the end of Algorithm 2, the θ-chain generated
by Algorithm 2 is independent of the x-chain. Hence, it does not suffer from the same degen-
eracy issues as the θ-chain generated by Algorithm 1. When it is not computationally feasible
to implement Algorithm 2, and an approximate posterior π̂(x,θ | b) is used as in Algorithms 3
and 4, the marginalization is only approximate so that there still remains some dependence
between the θ and x chains. This dependence can be mitigated as the approximation to the
marginal distribution of θ improves. In particular, we can use importance sampling, with
importance density π̂(x | b,θ), to approximate the integration over x. Specifically, we have
that

π(θ′ | b) =

∫
RN

π(x,θ′ | b)dx

=

∫
RN

π(x,θ′ | b)
π̂(x | b,θ′)

π̂(x | b,θ′)dx

≈ 1

K

K∑
j=1

π(x′j ,θ
′ | b)

π̂(x′j | b,θ
′)

def
= πK(θ′ | b),(20)

where x′j ∼ π̂(x′ | b,θ′). The idea behind pseudomarginal MCMC [2], in our setting, is to

generalize Algorithm 3 by using πK(θ | b) as an approximation to π(θ | b). The resulting
algorithm is given in Algorithm 5.

When K = 1, Algorithm 5 simply reduces to Algorithm 3. Conversely, as K → ∞,
πK(θ′ | b)→ π(θ′ | b), and hence the Markov chains produced by Algorithms 2 and 5 become
indistinguishable. Consequently, as K increases, the dependence between the θ-chain and the
x-chain dissipates as desired. It is shown in [2] that the value of πK(θ(t−1) | b) computed in
step t − 1 can be reused in step t so that a new set of importance samples does not need to
be computed in (20). Furthermore, this paper showed that the corresponding Markov chain
will converge in distribution to the target density, in our case π(x,θ | b).

4. Analysis. Algorithms 3 to 5 are all approximations of the one-block algorithm, Algo-
rithm 2, and they are meant to be used in cases in which implementing one-block is computa-
tionally expensive. We assume π̂(x,θ | b) is given by the first equation array in subsection 2.1
(array is not numbered), but with the conditional covariance Γcond(θ) replaced by an approx-
imation Γ̂cond(θ).D
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Algorithm 5 Pseudomarginal MCMC.

Input: Initialize θ(0). Define the length of the chain C and burn-in period Cb.

Output: Approximate samples from the posterior distribution {{x(t,i)}Ki=1,θ(t)}Ct=Cb+1.

1 Compute πK(θ(0) | b) with x′j ∼ π̂(x′ | b,θ(0)) as in (20). Define {x(0,j)}Kj=1 = {x′j}Kj=1.

2 for t = 1 to C do
3 Compute θ′ ∼ r(· | θ(t−1)).

4 Compute πK(θ′ | b) using x′j ∼ π̂(x′ | b,θ′) as in (20).

5 Compute

(21) ρ4(θ′,θ(t−1)) = min

{
1,

πK(θ′ | b)r(θ(t−1) | θ′)
πK(θ(t−1) | b)r(θ′ | θ(t−1))

}
.

6 With probability ρ4(θ′,θ(t−1)), set θ(t) = θ′ and {x(t,j)}Kj=1 = {x′j}Kj=1, else set θ(t) =

θ(t−1) and {x(t,j)}Kj=1 = {x(t−1,j)}Kj=1.

7 end

All three algorithms require the computation of samples from the approximate conditional
π̂(x | b,θ), which is of the form

x | b,θ ∼ N (x̂cond(θ), Γ̂cond(θ)),

where x̂cond(θ) ≡ µΓ̂cond(θ)A>b. In subsection 4.4, we tailor these results to a specific choice
of π̂(x | b,θ). The following quantity will be important in what follows:

(22) w(x,θ) ≡ exp

(
−1

2
x>(Γ−1

cond(θ)− Γ̂
−1

cond(θ))x

)
.

An expression for the moments of w(x,θ) can be computed analytically by using properties
of Gaussian integrals and was established in [8]. For positive integers m,

(23) Eπ̂(x|b,θ)[w
m(x,θ)] =

1

Mm(θ)
,

where

(24) Mm(θ) ≡
exp

(
µ2

2 b
>A(M−1

m (θ)− Γ̂cond(θ))A>b
)

(det Γ̂cond(θ)det Γm(θ))1/2

with
Γm(θ) = m(Γ−1

cond(θ)− Γ̂
−1

cond(θ)) + Γ̂
−1

cond(θ).

Further results for Mm(θ) can be derived if Γ̂cond(θ) is known explicitly. When Γ̂cond(θ)
is constructed using the low-rank approach outlined in subsection 4.4 below, we have that
Mm(θ) ≥ 1.D
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4.1. Analysis of the approximate one-block acceptance ratio. Our first result derives
a simplified version of the acceptance ratio of AOB (Algorithm 3) that is more amenable to
interpretation.

Proposition 1. In Algorithm 3, let (x,θ) denote the current state of the AOB chain and
let (x′,θ′) be the proposed state. Then, the acceptance ratio simplifies to

ρ2(x′,θ′;x,θ) = min

{
1,
z(x′,θ′)π(θ′ | b)r(θ | θ′)
z(x,θ)π(θ | b)r(θ′ | θ)

}
,

where z(x,θ) ≡ w(x,θ)/M1(θ).

Proof. It is clear that we only need to focus on the second term in the acceptance ratio,
which we can rewrite as

π(x′,θ′ | b)π̂(x | θ, b)r(θ | θ′)
π(x,θ | b)π̂(x′ | θ′, b)r(θ′ | θ)

=
r(θ | θ′)π(x′,θ′ | b)/π̂(x′ | θ′, b)
r(θ′ | θ)π(x,θ | b)/π̂(x | θ, b)

.

Since the posterior distribution is the product of the conditional and the marginal, we have

(25)
π(x,θ | b)
π̂(x | θ, b)

=
π(x | θ, b)π(θ | b)

π̂(x | θ, b)
.

In the proof of [8, Proposition 1], it is shown that π(x | θ, b)/π̂(x | θ, b) = z(x,θ), so that we
get

r(θ | θ′)π(x′,θ′ | b)/π̂(x′ | θ′, b)
r(θ′ | θ)π(x,θ | b)/π̂(x | θ, b)

=
r(θ | θ′)z(x′,θ′)π(θ′|b)
r(θ′ | θ)z(x,θ)π(θ|b)

,

which gives the desired result.

The meaning of this result is clear if we combine (23) and [8, Proposition 2] to obtain

(26) Eπ̂(x|b,θ) [z(x,θ)] = M−1
1 (θ)Eπ̂(x|b,θ) [w(x,θ)] = 1.

In other words, given the current state (x,θ) and a proposed state θ′, the ratio in Algorithm 3,
when averaged over π̂(x′ | θ′, b), is approximately that of the one-block algorithm, provided
z(x,θ) ≈ 1. Observe that if one takes Γ̂cond(θ) = Γcond(θ), so that z(x,θ) = 1, then

ρ2(x′,θ′;x,θ) = min

{
1,
π(θ′ | b)r(θ | θ′)
π(θ | b)r(θ′ | θ)

}
,

which is exactly the one-block acceptance ratio (15). Similarly, if Γ̂cond(θ) ≈ Γcond(θ) is a
sufficiently accurate approximation, then z(x,θ) ≈ 1, and AOB will closely approximate the
one-block algorithm.

4.2. Analysis of the ABDA acceptance ratios. Next, we discuss the acceptance ratio
of ABDA (Algorithm 4). In the first stage, one-block is applied to π̂(x,θ | b), yielding the
acceptance ratio (18) and target distribution π̂(θ | b). The analysis for the acceptance rate
at the second stage is provided in Proposition 2.D
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Proposition 2. Let (x,θ) denote the current state of the ABDA chain and let (x′,θ′) be
the proposed state. With w(x,θ) defined in (22), the acceptance ratio at the second stage is

ρ3(x′,θ′;x,θ) = min

{
1,
w(x′,θ′)

w(x,θ)

}
.

Proof. First, note that ρ̂1(θ′;θ), defined in (18), can be expressed as min{1, γ}, where

γ ≡ π̂(θ′ | b)r(θ | θ′)
π̂(θ | b)r(θ′ | θ)

.

Similarly, ρ̂1(θ;θ′) = min{1, γ−1}. But if γ > 0, then min{1, γ}/min{1, γ−1} = γ. Therefore,
the ratio ρ̂1(θ′;θ)/ρ̂1(θ;θ′) simplifies to γ, from which it follows that

q(x,θ | x′,θ′)
q(x′,θ′ | x,θ)

=
π̂(x | θ, b)π̂(θ′ | b)
π̂(x′ | θ′, b)π̂(θ | b)

,

where q is defined by (19). Thus, the ratio appearing in (17) simplifies to

π(x′,θ′ | b)q(x,θ | x′,θ′)
π(x,θ | b)q(x′,θ′ | x,θ)

=
π(x′,θ′ | b)π̂(x | θ, b)π̂(θ | b)
π(x,θ | b)π̂(x′ | θ′, b)π̂(θ′ | b)

=
π(x′,θ′ | b)π̂(x,θ | b)
π(x,θ | b)π̂(x′,θ′ | b)

.

Therefore, the acceptance ratio at the second stage is

(27) ρ3(x′,θ′;x,θ) = min

{
1,
π(x′,θ′ | b)π̂(x,θ | b)
π(x,θ | b)π̂(x′,θ′ | b)

}
.

From this equation it is clear that we only need to focus on the ratio of the exact to approximate
posterior densities π(x,θ | b)/π̂(x,θ | b), which simplifies according to (25). Moreover, it
is straightforward to verify that M1(θ) = π̂(θ | b)/π(θ | b), where M1(θ) is defined in (24).
Substituting these two results into (27) and recalling that z(x,θ) = w(x,θ)/M1(θ), we obtain
the desired result.

In this analysis, (27) shows that Algorithm 4 amounts to generating a proposal from the
approximate posterior distribution π̂(x,θ | b) in a Metropolis–Hastings independence sampler.
Compared to Algorithm 3, we expect Algorithm 4 to have lower statistical efficiency but with
much improved computational efficiency, since the posterior distribution π(x,θ | b) is only
evaluated when a “good” sample has been drawn.

Proposition 2 states that the acceptance ratio at the second stage is close to 1 if π̂(x,θ | b)
is a good approximation to π(x,θ | b). The value of the ABDA algorithm is seen by observing
that regardless of the choice of proposal distribution for θ, the acceptance rate at the second
stage will be high when π̂(x,θ | b) closely approximates the true target density π(x,θ | b).
For instance, if a poor proposal density is used for θ, then many bad states θ′ will likely be
proposed, but they will be discarded without wasting the computational effort to evaluate
π(x′,θ′ | b). Provided we construct π̂(x,θ | b) to closely approximate π(x,θ | b) for all
(x,θ) ∈ supp π, we can be confident that the true density will only be evaluated for states that
have a high chance of being accepted. Further, using the approximate density in the second
stage reduces the problem of tuning a Metropolis(–Hastings) algorithm to one of tuning the
proposal r(θ′ | θ), which is easier to do when θ is low-dimensional.D
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4.3. Analysis of the pseudomarginal acceptance ratio. We turn to the analysis of the
pseudomarginal algorithm (Algorithm 5). It is worth recalling that for K = 1, the pseudo-
marginal algorithm reduces to AOB.

Proposition 3. In Algorithm 5, the acceptance ratio simplifies to

ρ4(θ′;θ) = min

{
1,
zK(θ′)π(θ′ | b)r(θ | θ′)
zK(θ)π(θ | b)r(θ′ | θ)

}
,

where zK(θ) ≡ 1
K

∑K
j=1 z(x

j ,θ).

Proof. The proof is similar to Proposition 1 and is omitted.

More insight can be obtained by considering the asymptotic behavior of zK(θ). By (26)
and the strong law of large numbers, it follows that, for fixed θ, zK(θ)

a.s.→ 1 as K → ∞.
The interpretation is that the pseudomarginal algorithm exhibits similar behavior as AOB
with respect to one-block. The difference is that, by taking K → ∞, we attain almost sure
convergence, as opposed to an average behavior. Further, by the central limit theorem and the

fact that x1, . . . ,xK are independent for fixed θ, we have that
√
K(zK(θ)−1)

L→ N (0, σ2
z(θ)),

where

σ2
z(θ) ≡ Varπ̂(x|θ,b)[z(x,θ)] =

1

M2
1 (θ)

(
1

M2(θ)
− 1

M2
1 (θ)

)
<∞ ∀θ (a.e.).

It follows from the central limit theorem that zK(θ) is
√
K-consistent for 1 [37], i.e.,

(28) zK(θ)− 1 = Op(K−1/2)

as K → ∞. However, it is important to observe that σz(θ) will be close to zero when the
approximate distribution is close to the true distribution, in which case zK(θ) will be close to
one with high probability even for small K.

This analysis shows the advantage of the pseudomarginal approach, namely, that we can
still achieve desirable marginalization behavior in the presence of a poor approximation to
the full conditional distribution of π(x,θ | b). If the approximation π̂(x,θ | b) is not very
good, one can set K to be large to guarantee zK(θ) ≈ 1, at the expense of drawing repeated
realizations from the approximating distribution. Otherwise, if the approximation π̂(x,θ | b)
is good, zK(θ) ≈ 1 even for small K. The trade-off is thus a large number of realizations from a
poor approximation or few (one in the case of AOB) realizations from a quality approximation.
Regardless, if zK(θ) ≈ 1, Algorithm 5 will closely approximate the one-block algorithm.

4.4. Approximate posterior distribution using low-rank approximation. We briefly re-
view the low-rank approach for sampling from the conditional distribution π(x | θ, b) that
was used in [8] and which previously appeared in [9, 10, 14, 15, 21, 48, 32]. First, recall that
Γ−1

cond(θ) = µA>A+ σΓ−1
prior and assume Γ−1

prior = L>L, so that

Γ−1
cond(θ) = L>

(
µL−>A>AL−1 + σI

)
L.

Next, define a rank-k approximation as

(29) L−>A>AL−1 ≈ V kΛkV
>
k ,D

ow
nl

oa
de

d 
03

/0
3/

20
 to

 1
52

.1
4.

13
6.

96
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

MARGINALIZATION-BASED MCMC FOR INVERSE PROBLEMS 1121

where Λk is diagonal with the k largest eigvenvalues of L−>A>AL−1 and V k contains or-
thonormal columns. Combining the previous two equations, we obtain the approximate co-
variance

Γ̂
−1

cond(θ) ≡ (µL>V kΛkV
>
k L+ σΓ−1

prior) = L>(µV kΛkV
>
k + σI)L.

Defining x̂cond(θ) = µΓ̂cond(θ)A>b, the approximate posterior distribution is obtained as

(30) π̂(x,θ | b) ∝ f(θ) exp

(
−µ

2
b>b+

µ2

2
b>AΓ̂cond(θ)A>b− 1

2
‖x− x̂cond(θ)‖2

Γ̂
−1
cond(θ)

)
,

where f(θ) = µM/2σN/2π(θ). The marginal density is

(31) π̂(θ | b) ∝ f(θ)√
det(Γ̂

−1

cond(θ))

exp

(
−µ

2
b>b+

µ2

2
b>AΓ̂cond(θ)A>b

)
.

To sample from the approximate conditional distribution π̂(θ | b) we compute

(32) x = x̂cond(θ) +Gε, ε ∼ N (0, I),

where G := σ−1/2L−1(I − V kD̂kV
>
k ) and D̂k = I ± (I −Dk)

1/2. It is shown in [8] that

Γ̂cond = GG>. Since D̂k is diagonal and k � n, (32) provides a computationally cheap way
of generating draws from π̂(x | b,θ).

Acceptance ratio analysis. From [8, Proposition 2], the expression for w(x,θ) simplifies
considerably. First,

(33) Γ−1
cond(θ)− Γ̂

−1

cond(θ) = µL>

 N∑
j=k+1

λjvjv
>
j

L,
implying w(x,θ) = exp(−1

2

∑N
j=k+1 λj(v

>
j Lx)2), which in turn implies [8, Theorem 1]

Mm(θ) = exp

µ2

2σ

n∑
j=k+1

mµλj
mµλj + σ

(b>AL−1vj)
2

 n∏
j=k+1

(
1 +

mµ

σ
λj

)1/2
.

The key insight from this calculation is that z(x,θ) = w(x,θ)/M1(θ) only contains eigenvalues
that are discarded in the low-rank approximation. This means if the discarded eigenvalues are
very small, AOB is very close to the one-block algorithm. Similarly, for the ABDA algorithm,
this implies the acceptance ratio of the second stage is very high and for the pseudomarginal
MCMC, the variance σz(θ) is close to zero.

In practice, computing the truncated SVD can be computationally expensive. However,
the low-rank decomposition can be approximately computed using a Krylov subspace ap-
proach [47] or using a randomized approach [29]. These approximate factorizations can be
used instead to construct the approximating distribution, such as the conditional π̂(x | b,θ),
the marginal π̂(θ | b), and the full posterior distribution π̂(x, b | θ). The details are given
in [8].D
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Table 1
Summary of various computational costs in the AOB algorithm.

Component Dominant cost Additional cost

Pre-computation 2k(TA + TL−1) O(nk2)
Sample TL−1 O(nk)
Acceptance ratio TA + TL O(nk).

4.5. Computational cost. We briefly review the computational cost of the three algo-
rithms proposed in this paper. Denote the computational cost of forming the matrix-vector
product (henceforth referred to as matvec) withA by TA. Similarly denote the cost of a matvec
with L and L−1 as TL and TL−1 , respectively. To simplify the analysis, we make two assump-
tions: first, the cost of the matvecs dominates the computational cost, and second, the cost of
the transpose operations of the respective matrices is the same as that of the original matrix.

AOB algorithm. We first analyze the computational cost associated with AOB (Algo-
rithm 3). There are three major sources of computational cost. In the offline stage, we
precompute a low-rank approximation as in (29). By using a Krylov subspace solver or ran-
domized SVD algorithm, the dominant cost is in computing the matvecs, i.e., 2k(TA + TL−1)
floating point operations (flops), with an additional cost of O(nk2) flops. In the online stage,
to generate a composite sample (x′,θ′), the major cost that depends on the dimension of the
problem is due to (32) and can be quantified as TL−1 flops, with an additional O(nk) cost. Fi-
nally, computing the acceptance ratio requires one evaluation of the full posterior distribution
and one evaluation of the approximate posterior distribution. Evaluating the full posterior
using subsection 2.1 requires TA + TL flops, with an additional cost O(nk) flops, whereas
evaluating the approximate posterior distribution using (30) only requires O(nk) flops. These
computational costs are summarized in Table 1.

ABDA algorithm. The cost of ABDA, Algorithm 4, is the same as that of AOB, Algo-
rithm 3, with only one notable exception. The extra step of evaluating the approximate
marginal distribution (31) requires an additional 2TL−1 + O(nk) flops. However, while the
per-iteration cost of ABDA is comparable to that of AOB, the overall cost of ABDA can be
lower. The reason is that the acceptance ratio involving the full posterior distribution is only
evaluated in the second stage, unlike AOB in which the posterior distribution is evaluated at
every iteration. The computational speedup has been demonstrated in numerical experiments
(see section 5). Estimates of the computational speedup can be obtained by following the
approach in [16], but we omit this discussion.

Pseudomarginal algorithm. The cost of the pseudomarginal approach (Algorithm 5) is the
same as Algorithm 3 with two exceptions: K samples need to be generated which cost
K[TL−1+O(nk)] flops, and to evaluate the acceptance ratio, we need K[TA+TL+O(nk)] flops.
The benefits of the pseudomarginal algorithm, i.e., more effective marginalization, have to be
weighed against the additional cost of generating the samples and evaluating the acceptance
ratio.

5. Numerical experiments. Throughout this section, the proposal distribution for θ is
taken to be the adaptive Metropolis proposal [28] using a lognormal proposal for θ. For the
prior and noise precision parameters, we assign a Gamma prior, Gamma(1, 10−4), based onD
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Figure 2. (left) The true solution xtrue and the blurred vector b with 2% Gaussian noise to simulate
measurement error. (center) The posterior mean superimposed with the pointwise 95% credible bounds. (right)
The spectrum of the matrix L−>A>AL−1.

the recommendation of [5]. If a priori knowledge is available regarding the distribution of
θ, this can be incorporated into the hyperpriors. It is also worth mentioning that besides
the Gamma priors, other choices for the hyper-priors can also be made, e.g., proper Jeffreys.
See [8] for a detailed discussion. Besides these parameters, no other tuning parameters were
necessary.

5.1. One-dimensional deblurring. We take a simple one-dimension deblurring example to
illustrate our algorithms. This application arises from the discretization of a Fredholm integral
equation of the first kind as in (11). The details of this application are given elsewhere and we
refer the reader to them [3]. For the problem size we choose N = 128 and add Gaussian noise
with variance 0.012‖Axtrue‖22 to simulate measurement error, where xtrue is the true vector
which is assumed to be known. We model smoothness on x a priori by taking Γ−1

prior = −∆,
where −∆ is the discrete Laplacian with Dirichlet boundary conditions [35].

A low-rank approximation with k = 35 computed using the “exact” SVD was used to define
the approximate posterior distribution. We run 20,000 iterations of the AOB algorithm. The
first 10,000 samples were considered to be the burn-in period and were discarded. The left
panel of Figure 2 shows the true vector xtrue and the blurred vector b with the simulated
measurement noise. The right panel of the same figure shows the approximate posterior
mean superimposed on the true vector xtrue; also plotted are the curves corresponding to
the pointwise 95% credible bounds. The plots show that the true image is mostly contained
within the credible intervals, thereby providing a measure of confidence in the reconstruction
process.

Diagnostics for convergence. We now provide some limited diagnostics to assess the con-
vergence of the algorithm. In the upper left panel of Figure 3, we display the trace plots of the
precision parameters µ and σ for three different chains with different initializations. It is seen
that the chains appear to converge. Furthermore, the multivariate potential scale reduction
factor [7] for the x chain is 1.06, which is within the recommend rule-of-thumb range (less than
1.1). The top right panel of the same figure shows the histograms of the precision parameters.
The (two-sided) Geweke test [4] applied to the resulting µ- and σ-chains yield p-values both
greater than 0.98, meaning that there is no reason to believe the chains are out of equilibrium.D
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Figure 3. The (top left) trace plots and (top right) histograms of the µ and σ chains for the one-dimensional
deblurring example using the AOB algorithm. (bottom) Cumulative averages of the µ and σ chains against the
number of iterations. The target rank is k = 50.

Further support for convergence is obtained by monitoring the cumulative averages of the µ
and σ-chains plotted in the bottom panel of Figure 3, from which it is readily seen that the
cumulative averages converge.

In the right panel of Figure 1 (in section 2), we show the empirical autocorrelation function
of one of the σ chains. As mentioned earlier, the autocorrelation decays rapidly. While we
do not plot the autocorrelation of the µ chain, we observed that it had similar behavior. The
integrated autocorrelation time (IACT) was 6.97 for the σ-chain. The acceptance rate was
33.8% and the effective sample size (ESS) was 1434.61. Here, the ESS [36] is defined as ESS
= Ns/τσ, where Ns is the Monte Carlo sample size and τσ denotes IACT of the Markov chain.

Comparing different methods. We now compare all three algorithms proposed in section 3.
The setup of the problem is the same as the previous experiment. The previous analysis shows
that the AOB algorithm does a good job decorrelating the σ-chain from the x chain. We repeat
this experiment for the other two methods as well. Figure 4 plots the autocorrelation functions
of the σ-chains produced by the other two methods, ABDA and PM with K = 5. As is readily
seen, both methods successfully reduce the autocorrelation in the σ-chains. Although we do
not plot the µ-chains, they behave similarly to the σ-chains.D
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Figure 4. Plots of the empirical autocorrelation functions for the σ chains in the one-dimensional deblurring
example: (left) ABDA and (right) PM with K = 5.

Table 2
IACT and ESS for the σ chains produced by the proposed algorithms for the one-dimensional deblurring

example.

IACT σ ESS

AOB 6.97 1434.61
ABDA 7.14 1400.90

PM K = 5 6.90 1448.38

In Table 2, we compare the various methods proposed here. The ESS of the PM algo-
rithm is marginally better than ABDA or AOB. This is because PM has a lower IACT. This
is not surprising since the PM uses additional samples to marginalize the posterior distribu-
tion. More details regarding the PM method are given in the next experiment. Between the
AOB and ABDA algorithms, AOB has a higher ESS and is more statistically efficient. In
principle, though, ABDA is much less computationally expensive since the forward operator
A is evaluated less frequently. The difference is more pronounced in the inverse heat equation
example in which the forward model is more expensive to evaluate.

Effect of target rank. Here we investigate the effect of the target rank on the acceptance
rate and the statistical efficiencies of the samplers. The model is identical to that in the first
experiment with the exception that we change the target rank k that controls the accuracy
of the approximate posterior distribution. We vary the target rank k from 20 to 40 in incre-
ments of 5. The results are displayed in Table 3. When the target rank k is below 25, we find
that the acceptance rate is very close to zero, indicating that the low-rank approximation is
not sufficiently accurate. On the other hand, when the target rank k is 25 and above, the
acceptance rate is close to 33%. It is also seen that increasing the target rank does not sub-
stantially increase the acceptance rate. This suggests that we have successfully approximated
the posterior distribution to the point that the only limitation is the proposal distribution for
θ; effectively, the dimensionality has been reduced from 128 to 25 which is roughly a factor
of 5. Similar results are observed for the ABDA algorithm as well, shown in the right panel
of Table 3.D
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Table 3
Summary of the effect of increasing rank for the one-dimensional deblurring example. “A.R.” refers to

acceptance rate; the number as a suffix refers to the stage. In general, an increase in the target rank increases
the acceptance ratio and the ESS.

Rank ESS A.R.

20 259.38 0.1123
25 1353.71 0.3318
30 1480.83 0.3383
35 1357.73 0.3396
40 1357.73 0.3396

(a) AOB

Rank ESS A.R. 1 A.R. 2

20 7.67 0.0048 0.1465
25 1056.31 0.4988 0.7017
30 1326.67 0.5024 0.7242
35 1139.74 0.4997 0.7264
40 1139.74 0.4997 0.7264

(b) ABDA

Table 4
Effect of the importance sample size K on the σ-chains produced by the pseudomarginal approach in the

one-dimensional deblurring example. The target rank is fixed to be k = 20.

K ESS IACT σ CPU time [s] CES

1 282.49 32.00 43.62 0.1544
5 657.52 12.29 54.56 0.0830
10 1019.37 9.81 65.87 0.0646
50 1329.79 7.52 154.52 0.1162

Effect of increased importance sample size. In this experiment, we explore the effect of the
importance sample size K on the statistical efficiency in the PM algorithm. In addition to the
ESS and the IACT of the σ-chain, we report the CPU time in seconds, and the computational
cost per effective sample (CES), which is the ratio of the CPU time to the ESS. Proposition 3
shows that there are two ways to make the PM algorithm closer to one-block: by increasing
the target rank that defines the approximate distribution, or by increasing the number of
samples K. We take the target rank to be k = 20. From the previous experiment it is seen
that the samples have high autocorrelation and the resulting ESS is poor. Table 4 shows that
by increasing the number of samples K, the PM approach seems to be performing better as
evident in the increase in the ESS. However, the CPU time also increases considerably since
each step in the algorithm is more expensive, with increasing K. Indeed, when K increases
by a factor of 10, the ESS merely doubles. On the other hand, from Table 3 (corresponding
to PM with K = 1), increasing the target rank k by 10 substantially increases the ESS, but
is far less expensive. However, when the spectrum of the prior-preconditioned Hessian is flat,
increasing the target rank may not improve the ESS. On the other hand, Proposition 3 shows
that increasing the sample size K will have the desired effect.

5.2. A PDE-based example. In this application, we consider the inversion of the two-
dimensional initial state in the heat equation. Given the initial state u0, we solve

ut − κ∆u = 0 in D × [0, T ],

u(x, t) = 0 on ∂D × [0, T ],

u(x, 0) = u0 in D.

The domain is taken to be D = [0, 2]×[0, 1]. In the present experiment the diffusion coefficientD
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Figure 5. True initial-state (left) and observation points (right) for the inverse heat equation example.

2000 4000 6000 8000 10000

0.7

0.8

0.9

µ trace plots

2000 4000 6000 8000 10000

# of iterations

2

4

6

8

×10
-4

σ  trace plots

Figure 6. AOB results for the inverse heat equation example. Left: µ and σ trace plots; right: posterior
mean estimate of the initial state. The Monte Carlo sample size was 104.

was set to κ = .001 and we used a final simulation time of T = 5. The inverse problem seeks
to use point measurements of u(·, T ) to reconstruct the initial state. The assumed true initial
state used to simulate the data is shown in Figure 5 (left). We suppose that measurements
are taken at an array of 512 observation points depicted in Figure 5 (right).

We used a Gaussian prior with covariance operator A−2, where A is the Laplacian with
zero Dirichlet boundary condition. The data were generated by adding 10% Gaussian noise
to the measurements. The problem is discretized with a 64×32 grid. In the inverse problems,
we seek to reconstruct a discretized initial state in Rn with n = 63× 31 = 1953.

Let A denote the discretized forward operator that is obtained by composing the PDE so-
lution operator and the observation operator that extracts solution values at the measurement
points. Owing to the fast decay of singular values of A, we can use a low-rank approximation.
In the present example, a rank-70 approximation was found to provide sufficient accuracy.

Performance of AOB and ABDA. As a first experiment, we apply the AOB method to the
present inverse problem. Our MCMC implementation is run for 2× 104 iterations; we retain
104 samples and discard the rest as part of the burn-in period. In Figure 6, we provide the
trace plots of the µ and σ chains (left), along with approximate posterior mean estimate of
the initial state (right). We also report the empirical autocorrelation functions for the µ and
σ chains in Figure 7. The acceptance rate for the algorithm was approximately 30%.

Next, we compare the performance of AOB with that of ABDA. The results of our numer-
ical experiments are summarized in Figure 8. We note that both methods produce essentiallyD
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Figure 7. The empirical autocorrelation function computed using AOB in the inverse heat equation example.

Figure 8. Statistical inversion results for the heat equation example, using AOB and ABDA methods.

the same results. However, Table 5 illustrates the reduction in computation time facilitated
by ABDA. This application suggests that ABDA may be preferable to AOB when the forward
problem is computationally expensive.

6. Conclusions. This paper focuses on the problem of sampling from a posterior distri-
bution that arises in hierarchical Bayesian inverse problems. We restrict ourselves to linear
inverse problems with Gaussian measurement error, and we assume a Gaussian prior on the
unknown quantity of interest. The hierarchical model arises when the precision parameters
for both the measurement error and prior are assigned prior distributions. Gibbs samplingD
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Table 5
Sampling metrics for AOB and ABDA methods for the inverse heat equation example.

Metric AOB ABDA

Time (sec) 819.89 622.19
ESS 1096.46 933.37
IACT 9.12 10.71

[3] and low-rank independence sampling [8] have been proposed for this type of problem, but
the statistical efficiency of the resulting MCMC chains produced by either approach decreases
as the dimension of the state increases. We discuss this phenomenon in detail and consider a
solution using marginalization-based methods [22, 33, 45]. Marginalization can be just as com-
putationally prohibitive for sufficiently large-scale problems. Thus, we combine the low-rank
techniques with the marginalization-based approaches to propose three MCMC algorithms
that are computationally feasible for larger-scaled problems. The first of these new MCMC
methods is a direct extension of the one-block algorithm [45]; the second is an extension of
the delayed acceptance algorithm [13]; and the last is an extension of the pseudomarginal
algorithm [2]. We test and compare the performances of these three methods on two test
cases, demonstrating that they all work reasonably well. We also offer suggestions on when
one algorithm might be preferable over another based on, e.g., the spectrum of the prior-
preconditioned Hessian matrix. Future work will consider extensions to nonlinear forward
models and non-Gaussian priors on the unknown quantity of interest.
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